The CHARMM Force Field

Alexander D. MacKerell, Jr.
University of Maryland, Baltimore
School of Pharmacy

CECAM Workshop: Advances in Biomolecular Modelling and Simulations using CHARMM
University College Dublin, Ireland
June 5-8, 2012
Outline

• Part I: the CHARMM Force Field
 – Introduction: molecular mechanics
 – The CHARMM potential energy function
 – CHARMM recent developments & future prospects

• Part II: Parametrization tutorial
 – The CHARMM General Force Field (CGenFF)
 – Parametrization procedure
 – Some afterthoughts…
Molecular Mechanics

• Simulate reality in atomistic detail
 – “Ultimate microscope”
 – Study behavior of proteins in their native environment
 – Nanotech,…

• Microscopic Reality = Quantum Mechanics (QM)
 – Can be simulated, but not at biologically relevant system sizes and time scales
 ⇒ Need for simplified model

• Molecular mechanics
 – Approximates reality using classical mechanics
 – Different models = Force Fields
Elements of a force field

- Potential energy function = mathematical equation
 \[V = \sum_{\text{bonds}} K_b (b - b_0)^2 + \sum_{\text{angles}} K_\theta (\theta - \theta_0)^2 + \sum_{\text{improper dihedrals}} K_\varphi (\varphi - \varphi_0)^2 + \sum_{\text{dihedrals}} \sum_{n=1}^{6} K_{\phi,n} (1 + \cos(n\phi - \delta_n)) \]
 \[+ \sum_{\text{nonbonded pairs } ij} \frac{q_i q_j}{4\pi \varepsilon_0 D_{ij}} + \sum_{\text{nonbonded pairs } ij} \varepsilon_{ij} \left[\left(\frac{R_{\min,ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{R_{\min,ij}}{r_{ij}} \right)^6 \right] \]

- Many parameters: \(K_b, b_0, \ldots, K_{\phi,n}, n, \delta_n, q_i, \varepsilon, R_{\min} \)

- Force field
 = Potential energy function + parameter set
 - Relates chemical structure and conformation to energy
Structure – energy relation

- Structure: n atoms
- Each atom has an x, y and z coordinate
 $\Rightarrow 3n$ coordinates

$$V = f(x_1, y_1, z_1, x_2, y_2, z_2, \ldots, x_n, y_n, z_n)$$

$$\vec{F}_1 = \frac{\partial V}{\partial x_1} \hat{1}_x + \frac{\partial V}{\partial y_1} \hat{1}_y + \frac{\partial V}{\partial z_1} \hat{1}_z$$

$$\vdots$$

$$\vec{F}_n = \frac{\partial V}{\partial x_n} \hat{1}_x + \frac{\partial V}{\partial y_n} \hat{1}_y + \frac{\partial V}{\partial z_n} \hat{1}_z$$

- Force field gives energy and forces as a simple, analytical* function in $3n$ dimensions

* For additive force fields.
2D representation of $(3n)D$ potential energy surface

What can we do with it?
Energy minimization

- Downhill only
- No barrier crossing
Molecular Dynamics (MD) simulation

\[E_k = \frac{3}{2} kT \]
Molecular Dynamics (MD) simulation

Time = 0

Time = 1

Time = 2
Common “additive” empirical force fields

• Class I
 – CHARMM
 – CHARMMm (Accelrys)
 – AMBER
 – OPLS/AMBER/Schrödinger
 – ECEPP (free energy force field)
 – GROMOS

• Class II
 – CFF95 (Accelrys)
 – MM3
 – MMFF94 (CHARMM, Macromodel, MOE, elsewhere)
 – UFF, DREIDING
The additive CHARMM force field

• Mostly aimed at biomolecular simulations (in a broad sense)

• Multiple files:
 – Proteins “CHARMM22/CMAP”
 • C36 manuscript in review
 – Nucleic acids “CHARMM36”
 – Lipids “CHARMM36”
 – Carbohydrates “CHARMM35 (36)”
 – General organic molecules “CGenFF 2b7”
The potential energy function

- \(V_{\text{total}} = V_{\text{internal}} + V_{\text{external}} \)

- Bonded (aka. internal or intramolecular) energy
 \(V_{\text{internal}} = V_{\text{bonds}} + V_{\text{angles}} + V_{\text{dihedrals}} + V_{\text{impropers}} + \ldots \)

- Nonbonded (aka. external or intermolecular) energy
 \(V_{\text{external}} = V_{\text{van der Waals}} + V_{\text{electrostatic}} \)
CHARMM bonded energy function and corresponding force field parameters

\[
\sum_{\text{bonds}} K_b (b - b_0)^2 + \sum_{\text{angles}} K_\theta (\theta - \theta_0)^2 + \sum_{\text{dihedrals}} \sum_{n=1}^6 K_{\phi,n} \left(1 + \cos(n\phi - \delta_n)\right) \\
+ \sum_{\text{impropers}} K_\phi (\varphi - \varphi_0)^2 + \sum_{\text{Urey-Bradley}} K_{UB} \left(r_{1,3} - r_{1,3;0}\right)^2 + \sum_{\phi,\psi} V_{CMAP}
\]

Equilibrium terms
- \(b_0\): bonds
- \(\theta_0\): angles
- \(\delta_n\): dihedral phase
- \(\varphi_0\): impropers
- \(r_{1,3;0}\): Urey-Bradley

Force constants
- \(K_b\): bonds
- \(K_\theta\): angles
- \(K_\phi\): dihedral amplitude
- \(K_\omega\): impropers
- \(K_{UB}\): Urey-Bradley
Diagram of intramolecular energy terms

\[V_{bond} = K_b (b - b_o)^2 \]

\[V_{angle} = K_\theta (\theta - \theta_o)^2 \]

\[V_{dihedral} = K_\phi (1 + (\cos n\phi - \delta)) \]
\[V_{bond} = K_b (b - b_o)^2 \]

<table>
<thead>
<tr>
<th>Chemical type</th>
<th>(K_{bond})</th>
<th>(b_o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-C</td>
<td>100 kcal/mole/Å^2</td>
<td>1.5 Å</td>
</tr>
<tr>
<td>C=(\equiv)C</td>
<td>200 kcal/mole/Å^2</td>
<td>1.3 Å</td>
</tr>
<tr>
<td>C=-(\equiv)C</td>
<td>400 kcal/mole/Å^2</td>
<td>1.2 Å</td>
</tr>
</tbody>
</table>

![Graph showing bond energy versus bond length](graph.png)
\[V_{\text{dihedral}} = K_\phi (1 + (\cos n \phi - \delta)) \]

\[\delta = 0^\circ \]

Note use of a Fourier series for a dihedral
\[V_{improper} = K_\varphi (\varphi - \varphi_o)^2 \]

\[V_{Urey-Bradley} = K_{UB} (r_{1,3} - r_{1,3o})^2 \]
2D dihedral energy correction map to the CHARMM 22 ϕ,ψ backbone (CMAP)

- ϕ,ψ grid-based energy correction

$$V_{CMAP} = f(\phi,\psi) = \sum_{i=0}^{3} \sum_{j=0}^{3} c_{ij} \left(\frac{\phi - \phi_L}{\Delta\phi} \right)^i \left(\frac{\psi - \psi_L}{\Delta\psi} \right)^j$$

- c_{ij} determined from energies at grid points by bicubic spline interpolation \Rightarrow smooth first derivatives and continuous second derivatives
Towards proteins: Alanine dipeptide ϕ,ψ surfaces
van der Waals energy based on the Lennard-Jones 6-12 term

\[
\varepsilon_{ij} \left[\left(\frac{R_{\text{min},ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{R_{\text{min},ij}}{r_{ij}} \right)^6 \right]
\]
Treatment of hydrogen bonds: partial atomic charges yield appropriate interaction energies

\[
\begin{align*}
q_i &= 1, q_j = 1 & 0.5 & -0.5 \\
q_i &= 1, q_j = -1 & 0.4 & -0.4
\end{align*}
\]

C=O \quad H–N
nonbonded (intermolecular) interactions between bonded atoms are treated with special rules

1,2 interactions: excluded from energy calculation
1,3 interactions: excluded
1,4 interactions: included or scaled
> 1,4 interactions: included

Example of nonbond exclusions
Alternate treatment of nonbond interactions and future of force fields

Variations on treatment of nonbond terms in additive force fields to the explicit treatment of electronic polarizability
Example Class II energy function

\[
\sum_{\text{bonds}} \left[K_{b,2}(b - b_o)^2 + K_{b,3}(b - b_o)^3 + K_{b,4}(b - b_o)^4 \right] \\
+ \sum_{\text{angles}} \left[K_{\theta,2}(\theta - \theta_o)^2 + K_{\theta,3}(\theta - \theta_o)^3 + K_{\theta,4}(\theta - \theta_o)^4 \right] \\
+ \sum_{\text{dihedrals}} \left[K_{\phi,1}(1 - \cos\phi) + K_{\phi,2}(1 - \cos2\phi) + K_{\phi,3}(1 - \cos3\phi) \right] \\
+ \sum_{\text{improvers}} K_n \chi^2 \\
+ \sum_{\text{bonds}} \sum_{\text{bonds'}} K_{bb} (b - b_o)(b' - b_o') + \sum_{\text{angles}} \sum_{\text{angles'}} K_{\theta\theta'} (\theta - \theta_o)(\theta' - \theta_o') \\
+ \sum_{\text{bonds}} \sum_{\text{angles}} K_{b\theta} (b - b_o)(\theta - \theta_o) \\
+ \sum_{\text{bonds}} \sum_{\text{dihedrals}} K_{\phi,b} (b - b_o) \left[K_{\phi,b_1}\cos\phi + K_{\phi,b_2}\cos2\phi + K_{\phi,b_3}\cos3\phi \right] \\
+ \sum_{\text{bonds}} \sum_{\text{dihedrals}} \left[K_{\phi,b_1}\cos\phi + K_{\phi,b_2}\cos2\phi + K_{\phi,b_3}\cos3\phi \right] \\
+ \sum_{\text{angles}} \sum_{\text{dihedrals}} \left[K_{\phi,\theta_1}\cos\phi + K_{\phi,\theta_2}\cos2\phi + K_{\phi,\theta_3}\cos3\phi \right] \\
+ \sum_{\text{angles}} \sum_{\text{dihedrals}} (\theta - \theta_o) (\theta' - \theta_o') \cos\phi \\
+ \sum_{\text{angles}} \sum_{\text{angles'}} \sum_{\text{dihedrals}} (\theta - \theta_o) (\theta' - \theta_o') \cos\phi
\]
Alternate intermolecular terms for the electrostatic (additive) or vdW interactions

\[V_{Hbond} = \sum_{Hbonds} \varepsilon_{HB} \left[\left(\frac{R_{HB,A-H}}{r_{A-H}} \right)^{12} - \left(\frac{R_{HB,A-H}}{r_{A-H}} \right)^{10} \right] \cos(\theta_{A-H-D}) \]

\[V_{vdw} = \sum_{vdw} \varepsilon_{ij} \left[\left(\frac{R_{min,ij}}{r_{ij}} \right)^{9} - \left(\frac{R_{min,ij}}{r_{ij}} \right)^{6} \right] \]

\[V_{vdw} = \sum_{vdw} \varepsilon_{ij} \left(e^{\frac{-aR_{min,ij}}{r_{ij}}} - \left(\frac{R_{min,ij}}{r_{ij}} \right)^{6} \right) \]
Total potential energy for rotation of O-C-O-H dihedral in acetic acid
Summary of recent developments and future prospects

• Recent developments:
 – Proteins: “CHARMM36”
 – Nucleic Acids “CHARMM36”
 – Lipids: Alex Sodt tomorrow!
 – Carbohydrates “CHARMM36”
 – General organic molecules “CGenFF 2b7”

• Beyond the class I additive Potential Energy Function: alternate treatment of nonbond interactions and future of force fields.
C36 all-atom protein FF

Correct for conformational equilibrium of unstructured peptides in solution and improve treatment of sidechain conformational sampling

\[X^2^* \] values from comparison of experimental NMR J-coupling constants

<table>
<thead>
<tr>
<th></th>
<th>Ala\textsubscript{3}</th>
<th>Ala\textsubscript{5}</th>
<th>Ala\textsubscript{7}</th>
<th>Val\textsubscript{3}</th>
<th>Gly\textsubscript{3}</th>
<th>GPGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>C36</td>
<td>0.61</td>
<td>0.74</td>
<td>0.43</td>
<td>2.33</td>
<td>2.33</td>
<td>2.78</td>
</tr>
<tr>
<td>C22/CMAP</td>
<td>1.73</td>
<td></td>
<td></td>
<td></td>
<td>3.68</td>
<td>13.37</td>
</tr>
<tr>
<td>Amber ff99SB</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td>3.04</td>
<td>2.39</td>
</tr>
<tr>
<td>OPLS-AA</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gromos 53a6</td>
<td>1.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Normalized sum of squared deviations between observed and theoretical NMR J-coupling constants
% Secondary structure and comparison with NMR data for Ala$_5$ and (AAQAA)$_3$

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Property</th>
<th>ff99SB</th>
<th>ff99SB*</th>
<th>C22/CMAP</th>
<th>C36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala$_5$</td>
<td>% α_+</td>
<td>15.7</td>
<td>22.5</td>
<td>41.5</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>% β</td>
<td>37.8</td>
<td>34.5</td>
<td>25.3</td>
<td>30.8</td>
</tr>
<tr>
<td></td>
<td>% ppII</td>
<td>42.3</td>
<td>39.8</td>
<td>26.2</td>
<td>51.9</td>
</tr>
<tr>
<td></td>
<td>% α-helix</td>
<td>0.0</td>
<td>0.6</td>
<td>3.7</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>$\chi^2(J)$ [Hz2]</td>
<td>1.7</td>
<td>1.7</td>
<td>2.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Ac-(AAQAA)$_3$-NH$_2$</td>
<td>% α_+</td>
<td>26.9</td>
<td>48.5</td>
<td>98.7</td>
<td>44.0</td>
</tr>
<tr>
<td></td>
<td>% β</td>
<td>32.4</td>
<td>22.7</td>
<td>0.46</td>
<td>19.1</td>
</tr>
<tr>
<td></td>
<td>% ppII</td>
<td>31.8</td>
<td>21.8</td>
<td>0.41</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td>% α-helix</td>
<td>1.8</td>
<td>14.2</td>
<td>95.3</td>
<td>21.0</td>
</tr>
<tr>
<td></td>
<td>$\chi^2(\delta_C')$ [ppm2]</td>
<td>0.5</td>
<td>0.06</td>
<td>2.6</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Ala$_5$ vs. J-coupling, (AAQAA)$_3$ vs. chemical shift (Sparta)
Comparison with side-chain NMR J-coupling data for folded and unfolded proteins

<table>
<thead>
<tr>
<th>X^2 vs. NMR</th>
<th>Unfolded</th>
<th>Folded</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amber ff99SB-ILDN</td>
<td>9.7</td>
<td>8.9</td>
<td>9.3</td>
</tr>
<tr>
<td>C22/CMAP</td>
<td>9.8</td>
<td>9.2</td>
<td>9.5</td>
</tr>
<tr>
<td>C36</td>
<td>5.2</td>
<td>8.5</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Unfolded proteins are ubiquitin and GB1 in urea and folded proteins are ubiquitin, GB3, BPTI and hen lysozyme. Results represent the average X^2 values over all amino acids.
Helix formation in Ac-(AAQAA)$_3$-NH$_2$.
β-hairpin folding test. H^α chemical shifts from experiment (red) and calculated from simulation using SPARTA+ (black)
RMSD from experimental structures for folded proteins

Upper: C22/CMAP
Lower: C36

A Ubiquitin
B Lysozyme
C GB3
D BPTI

Time [μs]
CHARMM36 Nucleic Acid FF

Corrected for
RNA: base pair opening
DNA: underestimation of BII conformation

Table 1) Relative energy of BII to B1 conformation for model compound E and percentage of BII conformations from experimental and MD simulations of selected DNA duplexes.

<table>
<thead>
<tr>
<th>Cmpd</th>
<th>QM</th>
<th>C27</th>
<th>C27r1</th>
<th>C27r2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔEnergy</td>
<td>2.16</td>
<td>2.78</td>
<td>1.91</td>
<td>1.59</td>
</tr>
<tr>
<td>%BII</td>
<td>Exp.</td>
<td>C27</td>
<td>C27r1</td>
<td>C27r2</td>
</tr>
<tr>
<td>bdj025</td>
<td>NA</td>
<td>17</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>EcoR1</td>
<td>37</td>
<td>10</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>1axp</td>
<td>NA</td>
<td>8</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>JunFos</td>
<td>30</td>
<td>7</td>
<td>24</td>
<td>26</td>
</tr>
</tbody>
</table>

QM at the RIMP2/cc-pVTZ//MP2/6-31+G(d) level. Energies in kcal/mole. NA: not available.
Lower C36 (C7_2b) value due to systematic overestimation of % BII by the experimental method do extract BII from NMR data
Dihedral angle and pseudorotation angle probability distributions for EcoRI using the C27, C27_2b and AMBER Parm99bsc0 (green) along with NDB survey of all B form structures with a resolution ≤ 2.5 Å.
RMS Difference vs. time for the EcoR1 dodecamer.

CHARMM27 RNA FF: Overestimated WC base pair opening due to incorrect sampling of the 2’ OH orientation

N1-N3 WC distance

2’ OH orientation

Cyan: survey of Nucleic acid DataBase (NDB)
Dashed: different FF interactions
Probability distributions obtained for the phosphodiester backbone dihedral angles
Folding free energy values for folding of RNA hairpins based on the PMF calculations

<table>
<thead>
<tr>
<th>RNA</th>
<th>Exp.</th>
<th>C27</th>
<th>C36</th>
<th>Amber FF99</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔG<sub>fold</sub>: UUCG</td>
<td>-3.7±0.2</td>
<td>-3.3±0.3</td>
<td>-2.5±0.4</td>
<td>-13.5±2.0</td>
</tr>
<tr>
<td>ΔG<sub>fold</sub>: UUUU</td>
<td>-1.5±0.1</td>
<td>-2.2±0.2</td>
<td>-2.0±0.2</td>
<td>-10.0±0.7</td>
</tr>
<tr>
<td>ΔΔG<sub>fold</sub>: UUCG-UUUU</td>
<td>-2.2</td>
<td>-1.1</td>
<td>-0.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

GCCUUCGGGCG
CGCUUUUUGCG

AU base-pair RNA duplex structure (PDB: 1RNA)
18mer RNA duplex
GGCGCGCACCACGCGGCG
The use of Coulomb’s law with fixed atomic charges to treat the electrostatic interactions is a major simplification in current force fields. It is well known that the electron distribution of a molecule (and, thus, the atomic charges) changes as a function of the electrostatic field around the molecule. This is ignored in additive force fields. To compensate for this omission, the atomic charges are “enhanced” to mimic the polarization of molecules that occurs in a polar, condensed phase environment (e.g. aqueous solution, TIP3P water model dipole moment = 2.35 versus gas phase value of 1.85). This approximation has worked well in the current additive force fields; however, in many cases these models fail. To overcome this, next generation force fields are being developed that explicitly treat electronic polarization.
Methods to include electronic polarization in force fields

CHARMM
 Drude (MacKerell, Roux and coworkers)
 PIPF (Gao and coworkers, induced dipole)
 Cheq (Brooks, Patel and coworkers, fluctuating charge)

AMBER (induced dipole)
Friesner/Berne et al. (induced dipole/fluctuating charge)
TINKER/AMEOBA (induced dipole/multipole expansion)

All methods require that the perturbation of the electronic distribution due to the surrounding electrostatic field be optimized in an iterative fashion. This is due to the change in the “charge distribution” of a system leading to a new electrostatic field which then requires additional re-adjustment of the charge distribution (SCF: self-consistent field calculation). Matrix diagonalization may also be used, but is frequently inaccessible due to the large number of atoms in biological systems. In the end the need to perform an SCF calculation leads to a large increase in computational demands. Special methods to minimize this limitation in MD simulations have been developed (see below).
Fluctuating Charge Model (CHEQ)

Polarization is based on the movement of charge, q, between bonded atoms i and j in response to the surrounding electrostatic field. The extent of charge movement is based on the relative electronegativity, χ, and hardness, J, of the bonded atoms. The electrostatic energy is then obtained from the Coulombic interactions between the relaxed charges.

$$V(q_{ij}) = \chi_{ij}q_{ij} + \frac{1}{2}J_{ij}q_{ij}^2$$

$$\chi_{ij} = \chi_i + \chi_j$$

$$J_{ij} = J_i' + J_j' + 2J_{ij}'$$

Electronegativity: attraction of an atom for electrons
Hardness: work needed to transfer charge (resistance to charge movement)
Induced Dipole Model

Each atom, i, carries a charge, q_i, and a dipole moment, μ_i, such that electrostatic interactions between atoms i and j include:

- charge-charge interactions: $1/r_{ij}$
- charge-dipole interactions: $1/r_{ij}^2$
- dipole-dipole interactions: $1/r_{ij}^3$

Polarization included via relaxation of dipole moments in the electrostatic field, E_i, where α_i is the polarizability of atom i

$$\mu_i = \alpha_i \left(E_i^0 + E_i^{induced} \right) = \alpha_i \left(E_i^0 + \sum_{i \neq j} T_{ij} \mu_j \right)$$

Amoeba: charges (monopoles), dipoles, quadrapoles and induced dipoles
Classical Drude Oscillator

To each atom, i, add a virtual particle (Drude) attached to the atomic core via a harmonic spring and place a charge, q_{D}, on the Drude. The Drudes then relax their positions with respect the surrounding electrostatic field with the relative positions of the Drudes with respect to their parent atom along with the respective charges of each yielding an induced dipole moment on each atom. The electrostatic energy is then obtained from the Coulombic interactions between the atomic and Drude charges.
Classical Drude oscillator

\[U_{\text{Drude}} = \sum_{A<B}^{N_s,N_D} \frac{q_D(A) \cdot q_c(B)}{|\mathbf{r}_D(A) - \mathbf{r}(B)|} + \sum_{A<B}^{N_D} \frac{q_D(A) \cdot q_D(B)}{|\mathbf{r}_D(A) - \mathbf{r}_D(B)|} + \frac{1}{2} \sum_A^{N_D} k_D |\mathbf{r}_D(A) - \mathbf{r}(A)|^2 \]

\[\alpha(A) = \frac{q^2_D(A)}{k_D} \]

\[q_D(A) = \sqrt{\frac{\alpha(A)}{k_D}} \]

\[q_c(A) = q(A) - q_D(A) \]
SCF calculation of induced dipole moments are computationally too demanding for MD simulations. As an alternative the polarization is treated as a dynamic variable that is propagated during the MD trajectory. This is done such that the electronic degrees of freedom being propagated in the MD simulation stay close to the Born-Oppenheimer approximation (e.g. equivalent to the SCF result). For example, in the Drude model, the Drude particle is assigned part of the mass of the parent atom (e.g. 0.5 amu) and then the Drude is propagated as an atom at each step of the MD simulation with the relative momentum of the Drude with respect to the parent atom “cooled” to 0 K, thereby approaching the Born-Oppenheimer approximation.
Free Energies of aqueous following automated optimization of 226 molecules using the Drude model

226 small compounds in drude FF

$y=x$

linear fitting, $y=-0.211 + 1.027 \times x$

$R^2=0.874$
Part II

CHARMM General Force Field (CGenFF) parametrization tutorial
CGenFF: CHARMM General Force Field…

- “…for drug-like molecules”; mostly aimed towards Computer-Aided Drug Design (CADD)
- Why? Studying drug-target interactions with purely biomolecular force field problematic
 - Poor support for general organic molecules
 - Represent the drug with a different force field? NO! Different force fields are generally incompatible.
- Secondary role: coenzymes, prosthetic groups, metabolites,…
Points of focus

- Nonbonded parameters
 - LJ parameters: experimental density and ΔH_{vap}; assume transferability
 - Charges: scaled HF/6-31G(d) interactions with water
- Bonded parameters: MP2/6-31G(d) geometry, vibrational analysis and Potential Energy Surface (PES)
- Broad chemical space
 - Heterocyclic scaffolds
 - often central position in a drug's structure
 - “hinging effect” \Rightarrow geometry & conformational energetics
 - Functional groups
 - linkers, specific interactions with target
 - the more, the merrier
Numbering of Multiple Ring Systems
Parametrization
flow diagram
Statistics

- 445 model compounds, 139 atom types, 5129 bonded parameters
 - Bonded parameters

<table>
<thead>
<tr>
<th></th>
<th>data points</th>
<th>AD</th>
<th>RMSD</th>
<th>AAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond lengths (Å)</td>
<td>899</td>
<td>-0.0003</td>
<td>0.016</td>
<td>0.012</td>
</tr>
<tr>
<td>Valence angles (deg)</td>
<td>1420</td>
<td>-0.09</td>
<td>1.51</td>
<td>1.07</td>
</tr>
<tr>
<td>Dihedrals (deg)</td>
<td>137</td>
<td>-1.0</td>
<td>7.3</td>
<td>3.5</td>
</tr>
<tr>
<td>Vibrational frequencies</td>
<td>2619</td>
<td>3.6%</td>
<td>19.7%</td>
<td>6.4%</td>
</tr>
</tbody>
</table>

- Nonbonded

<table>
<thead>
<tr>
<th></th>
<th>data points</th>
<th>AD</th>
<th>RMSD</th>
<th>AAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>µ</td>
<td></td>
<td>compared to MP2</td>
</tr>
<tr>
<td>compared to HF</td>
<td>65</td>
<td>27%</td>
<td>35%</td>
<td>30%</td>
</tr>
<tr>
<td>µ direction compared to MP2</td>
<td>78</td>
<td>5.1°</td>
<td>8.5°</td>
<td>5.1°</td>
</tr>
<tr>
<td>compared to HF</td>
<td>65</td>
<td>5.0°</td>
<td>8.1°</td>
<td>5.0°</td>
</tr>
<tr>
<td>Water interaction energy (kcal/mol)</td>
<td>437</td>
<td>0.07</td>
<td>0.34</td>
<td>0.20</td>
</tr>
<tr>
<td>Water interaction distance (Å)</td>
<td>437</td>
<td>0.11</td>
<td>0.20</td>
<td>0.16</td>
</tr>
<tr>
<td>Molecular volume (Å³)</td>
<td>111</td>
<td>0.6%</td>
<td>2.6%</td>
<td>2.1%</td>
</tr>
<tr>
<td>Heat of vaporization (kcal/mol)</td>
<td>95</td>
<td>-0.3%</td>
<td>10.6%</td>
<td>7.0%</td>
</tr>
</tbody>
</table>
Water interaction energy / (kcal/mol)

$y = 0.988x - 0.010$

$R^2 = 0.993$
Molecular volume / Å³

\[y = 1.030x - 3.331 \]

\[R^2 = 0.994 \]
$\Delta_{vap}H$ / (kcal/mol)

$y = 0.94x + 0.56$

$R^2 = 0.84$
Validation

Free energies of solvation:

Willian C. Swope, IBM, Almaden Research Center
Daniel J. Price, GlaxoSmithKline, Research Triangle Park
CGenFF program

- Input: mol2 file
- Ring perception
- Resolution of resonance
- Aromaticity perception
- Actual atom typing
- Assignment of parameters by analogy
- Assignment of charges
- Output: CHARMM toppar stream file
Ring perception: HRG

- Homeomorphically reduced graph (HRG):

- **Pros:** conceptually simple, fast
- **Cons:** does not actually identify rings. Generalizing it to do so is more complicated and/or may suffer combinatorial explosion on systems with many conjugated rings.
Ring perception: Figueras' algorithm

• Variation on breadth-first message-passing algorithm:

• Pros: fast, polynomial scaling
• Cons:
 – Presented as a Smallest Sets of Smallest Rings (SSSR) algorithm
 – may waste time iterating through straight chains

⇒ Ring perception in CGenFF atom typer:
 – Stage 1: reduction to HRG
 – Stage 2: variation on Figueras' algorithm that identifies the 3 smallest rings of which each atom is a member
Problems with resonance

- bonds in input may or may not be marked as aromatic

Problems:
- Mark 5-membered rings as aromatic?
- If yes, how to reliably count electrons/determine charge?
- Mark other cases of 50/50 resonance as aromatic or not?

Solution:
- Accept all possibilities; resolve resonance and identify aromaticity
- Perform actual atom typing on a single resonance structure
We mark a ring as aromatic if:

- it's 5 or 6-membered
- all carbons in the ring are sp²
- it has 6 in-ring π-electrons, where
 - an in-ring double bond counts for 2e
 - a heteroatom with a Lone Pair that is not part of another aromatic ring or a double bond counts for 2e
 - any atom that is part of another aromatic ring counts for 1e

⇒ iterative procedure
Heirarchical Atom typing
Atom typer: rule file

cat NG_
 typ NG1T1 : nb 4 ne (bo 3 el C) err "nitrilium ion"
typ NG1T1 : ne (bo 3 el C)
typ NG1T1 : ne (bo 3) err "triple bonded non-nitrile nitrogen"
sub NG_2 : ne (bo 2)
sub NG_3P : nb 4 charge 1
sub NG_N : nb 3
typ NG301 : err "negatively charged single bonded nitrogen"
end

cat NG_N
#Amidinium and guanidinium
typ NG2R52 : ring 5 ne (bo 1 el C ne (bo 2 el N nb 4))
typ NG2P1 : ne (bo 1 el C ne (bo 2 el N nb 4))
#Single bonded neutral nitrogens that are sp2
typ NG2RC0 : arom 5 arom 6
 typ NG2RC0 : ring2 5 arom 6 # warn "aromatic 6-ring fused to all-sp2 non-aromatic 5-ring"
typ NG2R51 : arom 5
typ NG2R51 : ring2 5
typ NG2R61 : arom 6
sub NG_AM : ne (bo 1 el C ne (bo 2 elos))
typ NG2S3 : ne (arom 6) (el H) (el H) impr
typ NG2S3 : ne (el P ne (bo 2 el O))
typ NG2S3 : ne (el P ne (bo 1 el O nb 1))
#Single bonded neutral nitrogens that are sp3
typ NG3C51 : ring 5
typ NG3N1 : ne (el N)
typ NG331 : ne (el H) (el H) (el H)
typ NG321 : ne (el H) (el H)
typ NG311 : ne (el H)
typ NG301 :
end

cat NG_AM
#The next one is pretty specific because of exceptions like butyrolactam fused with pyrrole
typ NG2R53 : ! (arom 5) ! (arom 6) ! (arom 7) ring23 5 ne (bo 1 el C ring23 5 ne (bo 2 elos))
typ NG2S2 : ne (el H) (el H)
typ NG2S1 : ne (el H)
typ NG2S0 :
end
Bonded parameters: algorithm

- Translate the atom typer rule file into a matrix containing the penalties of changing any atom into any other atom.
- For a given molecule, generate a list of missing parameters.
- In the case of a missing angle parameter A-B-C, the penalty for changing atom B is multiplied by a fixed number (e.g., 10); same for the central to atoms in a dihedral parameter.
- Perform substitutions of atom types that have the lowest possible penalty until we arrive at a combination of atom types that already exists.

\Rightarrow gradual degradation of quality; penalty score
Bonded parameters

• A parameter:

CG2O1 NG2S1 370.00 1.3450 ! Alanine Dipeptide, lk

• Rule file:

cat NG3
sub NG3P : pri 0 alt NG3N 2 up 12
sub NG3N : pri 5 alt NG3P 2 up 12
end

cat NG3P
typ NG3P2 : pri 0 alt NG3P1 1 alt NG3P3 3 alt NG3P0 4 up 8
typ NG3P3 : pri 1 alt NG3P2 1 alt NG3P1 2 alt NG3P0 4 up 8
typ NG3P1 : pri 3 alt NG3P2 1 alt NG3P0 3 alt NG3P3 4 up 8
typ NG3P0 : pri 4 alt NG3P1 1 alt NG3P2 2 alt NG3P3 4 up 8
end

cat NG3N
typ NG321 : pri 0 alt NG311 1 alt NG301 1.5 alt NG3N1 2.5 alt NG3C51 3 alt NG331 4 up 8
typ NG311 : pri 0.5 alt NG301 0.5 alt NG321 1 alt NG3N1 1.5 alt NG3C51 2 alt NG311 5 up 8
typ NG301 : pri 1 alt NG311 0.5 alt NG321 1.5 alt NG3N1 2 alt NG3C51 2.5 alt NG331 5.5 up 8
typ NG3N1 : pri 1.5 alt NG311 1.5 alt NG301 2 alt NG321 2.5 alt NG3C51 3.5 alt NG331 6.5 up 8
typ NG3C51 : pri 2.5 alt NG311 2 alt NG301 2.5 alt NG321 3 alt NG3C51 4 alt NG331 7 up 8
typ NG331 : pri 4 alt NG321 4 alt NG311 5 alt NG301 5.5 alt NG3N1 6.5 alt NG3C51 7 up 8
end
Charges

- Bond charge increments associated with bond parameters
- Example:

```
CG321 HGA2 309.00 1.1110 !<% 0.09 %>! PROT adm jr., 3/2/92
```

- 2 increments associated with angles and 3 with dihedrals
 ⇒ future possibility of capturing inductive and mesomeric effects
- Optimized to reproduce charges on existing compounds
- Novel molecules: increments “stick to” parameters by analogy
Advantage of higher-order increments

- Reproduction of 9681 manually optimized charges
- Bonds (1st order): RMSD = 0.0394 e
- Angles (2nd order): RMSD = 0.0174 e
- Dihedrals (3rd order): RMSD = 0.0081 e
Final result (1)

* Toppar stream file generated by
* CHARMM General Force Field (CGenFF) program version 0.9.1 beta
* For use with CGenFF version 2b6
*

read rtf card append
* Topologies
*

! "penalty" is the highest penalty score of the associated parameters.
! Penalties lower than 10 indicate the analogy is fair; penalties between 10
! and 50 mean some basic validation is recommended; penalties higher than
! 50 indicate poor analogy and mandate extensive validation/optimization.

RESI acyloin 0.000 ! param penalty= 42.900 ; charge penalty= 7.692
GROUP ! CHARGE CH_PENALTY
ATOM C1 CG2O4 0.197 ! 5.743
ATOM O2 OG2D1 -0.395 ! 4.755
ATOM H3 HGR52 0.090 ! 2.145
ATOM C4 CG321 0.170 ! 7.116
ATOM H5 HGA2 0.090 ! 0.000
ATOM H6 HGA2 0.090 ! 0.000
ATOM O7 OG311 -0.625 ! 7.692
ATOM H8 HGP1 0.383 ! 3.769

BOND C1 O2
BOND C1 H3
BOND C1 C4
BOND C4 H5
BOND C4 H6
BOND C4 O7
BOND O7 H8
IMPR C1 C4 O2 H3

END
Final result (2)

read param card flex append
* Parameters generated by analogy
*

ANGLES
CG2O4 CG321 OG311 112.00 122.50 ! acyloin, from CG2O5 CG311 OG311, penalty= 4.5

DIHEDRALS
OG2D1 CG2O4 CG321 OG311 0.0000 2 0.00 ! acyloin, from OG2D3 CG2O5 CG311 OG311, penalty= 14.5
HGR52 CG2O4 CG321 OG311 0.0000 3 180.00 ! acyloin, from HGR52 CG2O4 CG321 CG331, penalty= 42.9
CG2O4 CG321 OG311 HGP1 0.2200 1 0.00 ! acyloin, from CG2O5 CG311 OG311 HGP1, penalty= 4.5
CG2O4 CG321 OG311 HGP1 0.2300 2 180.00 ! acyloin, from CG2O5 CG311 OG311 HGP1, penalty= 4.5
CG2O4 CG321 OG311 HGP1 0.4200 3 0.00 ! acyloin, from CG2O5 CG311 OG311 HGP1, penalty= 4.5

END
Acetazolamide

Not to be confused with acetoheaxamide.

Acetazolamide, sold under the trade name Diamox, is a carbonic anhydrase inhibitor that is used to treat glaucoma, epileptic seizures, idiopathic intracranial hypertension (pseudotumor cerebri), altitude sickness, cystinuria, and dural ectasia. Acetazolamide is available as a generic drug and is also a diuretic.
ParamChem project outline https://www.paramchem.org/

- “Extensible Cyberenvironments for Empirical and Semiempirical Hamiltonian Parameter Optimization and Dissemination”
- Translation: “online parameterization engine and database for force fields and semi-empirical methods”
- Current functionality: CGenFF program (“initial guess”)
- Actual parametrization: under construction!
Submit to molecule to CGenFF program at paramchem.org

• Build mol2 in molecular editor
• Mind the bond orders and hydrogens!!!
 – Most commercial molecular editors (both QM and bio) get this right; free versions exist
 – Mind the quirks – look at the mol2 file (simple format)
Output Data

filename: acazam.mol2

Output Information

click here to download/view the atomtypes, charges and parameters

Upload File

click here to upload a new file

Summary of output data and its utilization
CGenFF output

RESI acazam 0.000 ! param penalty= 209.000 ; charge penalty= 121.856
GROUP ! CHARGE CH_PENALTY
ATOM C1 CG2R53 0.568 ! 108.073
ATOM N2 NG2R50 -0.451 ! 41.238
ATOM N3 NG2R50 -0.512 ! 38.122
ATOM C4 CG2R53 0.801 ! 118.976
ATOM S5 SG2R50 -0.096 ! 121.856
ATOM N6 NG2S1 -0.424 ! 109.486
ATOM H6 HGP1 0.322 ! 4.985
ATOM C7 CG2O1 0.523 ! 7.138
ATOM O7 OG2D1 -0.524 ! 3.801
ATOM C8 CG331 -0.273 ! 3.228
ATOM H81 HGA3 0.090 ! 0.000
ATOM H82 HGA3 0.090 ! 0.000
ATOM H83 HGA3 0.090 ! 0.000
ATOM S9 SG3O2 0.640 ! 102.754
ATOM O91 OG2P1 -0.419 ! 3.561
ATOM O92 OG2P1 -0.419 ! 3.561
ATOM N10 NG321 -0.766 ! 5.281
ATOM H101 HGP1 0.380 ! 0.425
ATOM H102 HGP1 0.380 ! 0.425

ANGLES
NG2R50 CG2R53 NG2S1 65.00 127.80 ! acazam , from NG2R53 CG2R53 OG2D1, penalty= 57
NG2R50 CG2R53 SG3O2 70.00 109.00 ! acazam , from NG2R53 CG2R53 SG311, penalty= 40
NG2S1 CG2R53 SG2R50 30.00 118.00 ! acazam , from SG2R50 CG2R53 HGR52, penalty= 144
SG2R50 CG2R53 SG3O2 70.00 109.00 ! acazam , from NG2R53 CG2R53 SG311, penalty= 144
CG2R53 NG2R50 NG2R50 110.00 106.80 ! acazam , from CG2R51 NG2R50 NG2R50, penalty= 3
CG2O1 NG2S1 CG2R53 50.00 120.00 ! acazam , from CG2O1 NG2S1 CG2R61, penalty= 8.5
CG2R53 NG2S1 HGP1 34.00 117.00 ! acazam , from CG2R61 NG2S1 HGP1, penalty= 8.5
CG2R53 SG2R50 CG2R53 110.00 97.00 ! acazam , from CG2R51 SG2R50 CG2R53, penalty= 3
CG2R53 SG3O2 NG321 60.00 98.00 ! acazam , from CG2R61 SG3O2 NG321, penalty= 8.5
CG2R53 SG3O2 OG2P1 60.00 101.00 ! acazam , from CG2R61 SG3O2 OG2P1, penalty= 8.5

...
Strategy

- All high penalties involve the central 1,3,4-thiadiazole ring and its linkages

- Common motif:
 - Individual chemical groups: often well-supported by CGenFF
 - Linkages between them: high penalties
 ⇒ Divide-and-conquer

- Note in this case: central 1,3,4-thiadiazole ring poorly supported by CGenFF

- Typically only optimize new parameters not already in CGenFF
Divide-and-conquer (linkage-oriented!)
Full parameter optimization

- Target data generation
 - MP2/6-31G* optimization and frequency calculation
 - HF/6-31G*† water interactions at MP2* geometry (only HF!!)
 - MP2/6-31G* Potential Energy Scans (PES)
 - Geometry/Frequency/PES may be at a higher level if accessible
- Optimization
 - Charges using water interactions at MP2 geometry
 - Hard degrees of freedom
 - Reference bonds and angles target MP2 geometry
 - Force constants (and amplitudes) target MP2 vibrational analysis
 - Soft degrees of freedom target MP2 PES
 - Revisit charges using water interactions at MM geometry
- Intrinsically iterative but above order often mitigates this

* MP2 calculations on anions require diffuse functions on non-hydrogen atoms (MP2/6-31+G*)
† – HF interaction energy scaled by 1.16 for non-ions
– Unscaled MP2 instead of HF for water interactions for 3rd row and heavier.
Parametrization tutorial
(/home/mackerell/tutorial.tgz)

Collection of scripts/charmm inputs to perform various steps of the optimization process.

See tutorial.orig/README (may be streamed to automatically run all inputs)

Relevant inputs will be listed
Hard and soft degrees of freedom

• Hard degrees of freedom: bonds, angles and rigid dihedrals and impropers
• Soft degrees of freedom: flexible dihedrals and impropers

• TDAZ: all degrees of freedom are hard
 ⇒ no PES

See generate.inp
TDAZ water interactions (1)

Using MP2 geometry

QM DIPOLE (DEBYE)

MP2/6-31G*: X= -3.1938 Y= 1.2595 Z= 0.0011 TOT= 3.4332
HF/6-31G*: X= -3.4411 Y= 1.3570 Z= 0.0012 TOT= 3.6990

Empirical DIPOLE: -3.93696 1.55252 1.196776E-03 4.23202

1) C1H..OHH 90.0 DEGREES

\[\text{A.I.} = -3.95 \quad 2.28 \]

\[\text{EMP.} = -3.89637 -3.99037 9.400732E-02 2.23 \]

ENE DIFF: 5.363E-02

DIST DIFF: -5E-02

2) N2...HOH, 90. DEGREES

\[\text{A.I.} = -5.33 \quad 2.19 \]

\[\text{EMP.} = -5.24768 -5.64785 0.400169 2 \]

ENE DIFF: 8.2473E-02

DIST DIFF: -0.19

3) S5...HOH, 90. DEGREES

\[\text{A.I.} = -0.37 \quad 2.90 \]

\[\text{EMP.} = -0.365761 7.9964E-02 \]

ENE DIFF: -0.357963 2.5

DIST DIFF: -0.4

4) S5...HOH LONE PAIR, HOH: 0. DEGREES

\[\text{A.I.} = -0.44 \quad 2.84 \]

\[\text{EMP.} = -0.365761 7.9964E-02 \]

ENE DIFF: -0.44174 2.51

DIST DIFF: -0.44

AVEDIFF, RMSDIFF, AVERAGE ABSOLUTE ERROR

\[0.000 \quad 0.121076 \]

See water_constr.inp
TDAZ reference angles (1)

ANGLES
CG2R53 NG2R50 NG2R50 110.00 106.80 ! ... penalty= 3
CG2R53 SG2R50 CG2R53 110.00 97.00 ! ... penalty= 3

ANGLES
CG2R53 NG2R50 NG2R50 110.00 104.50 ! TDAZ,
CG2R53 SG2R50 CG2R53 110.00 96.60 ! TDAZ

RESI TDAZ ring 5 C1 N2 N3 C4 S5 : sum = 545 (540)
Parameters involved:
..//toppar/tdaz_water1.str line 37: CG2R53 NG2R50 NG2R50 ang=106.80
..//toppar/tdaz_water1.str line 37: CG2R53 NG2R50 NG2R50 ang=106.80
..//toppar/par_all36_cgenff.prm line 1059: NG2R50 CG2R53 SG2R50 ang=117.20
..//toppar/tdaz_water1.str line 38: CG2R53 SG2R50 CG2R53 ang=97.00
..//toppar/par_all36_cgenff.prm line 1059: NG2R50 CG2R53 SG2R50 ang=117.20

CHARMM> !C4-S5-C1 86.4369
CHARMM> quick 5 7 1
QUICKA: The angle is: 86.314
CHARMM> !S5-C1-N2 114.8867
CHARMM> quick 7 1 3
QUICKA: The angle is: 114.688
CHARMM> !C1-N2-N3 111.8949
CHARMM> quick 1 3 4
QUICKA: The angle is: 112.155
CHARMM> !N2-C1-H1 122.6403
CHARMM> quick 3 1 2
QUICKA: The angle is: 125.656
CHARMM> !S5-C1-H1 122.473
CHARMM> quick 7 1 2
QUICKA: The angle is: 119.657

See generate.inp
TDAZ force constants (1)

Before

ANGLES
CG2R53 NG2R50 NG2R50 110.00 104.50 ! TDAZ
CG2R53 SG2R50 CG2R53 110.00 96.60 ! TDAZ

DIHEDRALS
SG2R50 CG2R53 NG2R50 NG2R50 6.0000 2 180.00
HGR52 CG2R53 NG2R50 NG2R50 5.5000 2 180.00
NG2R50 CG2R53 SG2R50 CG2R53 8.5000 2 180.00
HGR52 CG2R53 SG2R50 CG2R53 14.0000 2 180.00

After

ANGLES
CG2R53 NG2R50 NG2R50 80.00 104.50 ! TDAZ
CG2R53 SG2R50 CG2R53 73.00 96.60 ! TDAZ

DIHEDRALS
SG2R50 CG2R53 NG2R50 NG2R50 10.9000 2 180.00
NG2R50 CG2R53 SG2R50 CG2R53 7.5000 2 180.00
CG2R53 NG2R50 NG2R50 CG2R53 4.4500 2 180.00
HGR52 CG2R53 NG2R50 NG2R50 4.3600 2 180.00

See quick_molvib.inp QM:
tdz_molvib_qm.inp
TDAZ reference angles (2)

ANGLES
CG2R53 NG2R50 NG2R50 80.00 104.50 ! TDAZ
CG2R53 SG2R50 CG2R53 73.00 96.60 ! TDAZ

ANGLES
CG2R53 NG2R50 NG2R50 80.00 103.65 ! TDAZ
CG2R53 SG2R50 CG2R53 73.00 98.30 ! TDAZ

CHARMM> !C4-S5-C1 86.4369
CHARMM> quick 5 7 1
QUICKA: The angle is: 84.737
CHARMM> !S5-C1-N2 114.8867
CHARMM> quick 7 1 3
QUICKA: The angle is: 115.897
CHARMM> !C1-N2-N3 111.8949
CHARMM> quick 1 3 4
QUICKA: The angle is: 111.735
CHARMM> !N2-C1-H1 122.6403
CHARMM> quick 3 1 2
QUICKA: The angle is: 125.126
CHARMM> !S5-C1-H1 122.473
CHARMM> quick 7 1 2
QUICKA: The angle is: 118.977

CHARMM> !C4-S5-C1 86.4369
CHARMM> quick 5 7 1
QUICKA: The angle is: 85.061
CHARMM> !S5-C1-N2 114.8867
CHARMM> quick 7 1 3
QUICKA: The angle is: 115.755
CHARMM> !C1-N2-N3 111.8949
CHARMM> quick 1 3 4
QUICKA: The angle is: 111.715
CHARMM> !N2-C1-H1 122.6403
CHARMM> quick 3 1 2
QUICKA: The angle is: 125.188
CHARMM> !S5-C1-H1 122.473
CHARMM> quick 7 1 2
QUICKA: The angle is: 119.057

Reconsider geometry following adjustment of force constants

See generate.inp
TDAZ force constants (2)

Before

ANGLES
CG2R53 NG2R50 NG2R50 80.00 104.50 ! TDAZ
CG2R53 SG2R50 CG2R53 73.00 96.60 ! TDAZ

DIHEDRALS
SG2R50 CG2R53 NG2R50 NG2R50 10.9000 2 180.00
NG2R50 CG2R53 SG2R50 CG2R53 7.5000 2 180.00
CG2R53 NG2R50 NG2R50 CG2R53 4.4500 2 180.00
HGR52 CG2R53 NG2R50 NG2R50 4.3600 2 180.00
HGR52 CG2R53 SG2R50 CG2R53 4.3600 2 180.00

After

ANGLES
CG2R53 NG2R50 NG2R50 80.00 103.65 ! TDAZ
CG2R53 SG2R50 CG2R53 73.00 98.30 ! TDAZ

DIHEDRALS
SG2R50 CG2R53 NG2R50 NG2R50 10.9000 2 180.00
NG2R50 CG2R53 SG2R50 CG2R53 7.5000 2 180.00
CG2R53 NG2R50 NG2R50 CG2R53 4.4500 2 180.00
HGR52 CG2R53 NG2R50 NG2R50 4.3600 2 180.00
HGR52 CG2R53 SG2R50 CG2R53 4.3600 2 180.00

Resconsider FCs following adjustment of equilibrium terms:
Self-consistent.

QM:

1 461.3 tRINGa 110.
2 566.6 dRING 72. ssC-S 16.
3 583.5 tRING 105.
4 688.8 saC-S 50. dRINGa 49.
5 730.2 waCH 110.
6 765.4 wsCH 105.
7 826.7 ssC-S 55. sN-N 21.
8 961.9 daCH 35. ssC-N 25.
9 980.9 dRINGa 40. saC-S 38.
10 1130.3 saC-N 52. dsCH 47.
11 1308.9 sN-N 48. ssC-N 20.
12 1445.3 daCH 48. ssC-N 37.
13 1473.7 dsCH 41. saC-N 36.
14 2948.0 saC-N 99.
15 2948.9 ssCH 99.

1 467.1 tRINGa 110.
2 581.5 tRING 96.
3 603.9 dRING 64. ssC-S 38.
4 731.7 wsCH 96.
5 737.9 saC-S 96.
6 770.7 waCH 110.
7 877.3 dRINGa 88.
8 887.3 ssC-S 58. dRING 35.
9 963.1 sN-N 86.
10 1173.2 dsCH 84.
11 1202.7 daCH 47. ssC-N 33.
12 1327.5 saC-N 91.
13 1335.5 ssC-N 63. daCH 37.
14 3121.6 saC-N 100.
15 3124.9 ssCH 99.
TDAZ water interactions (2)

See water_constr.inp
water.inp

TDAZ WATER INTERACTION
USING MP2 GEOMETRY
QM DIPOLE (DEBYE)

MP2/6-31G*: X= -3.1938 Y= 1.2595 Z= 0.0011 TOT= 3.4332

HF/6-31G*: X= -3.4411 Y= 1.3570 Z= 0.0012 TOT= 3.6990

EMPIRICAL DIPOLE: -3.9369 1.55252 1.196776E-03 4.23202

1) C1H..OHH 90.0 DEGREES
A.I. -3.95 2.28

EMP. -3.95937 -3.99037 9.400732E-02 2.23
ENE DIFF: 5.363E-02 DIST DIFF: -5E-02

2) N2...HOH, 90. DEGREES
A.I. -5.33 2.19

EMP. -5.36892 -5.76325 0.394332 2
ENE DIFF: -3.892E-02 DIST DIFF: -0.19

3) S5...HOH, 90. DEGREES
A.I. -0.37 2.90

EMP. -0.364416 -0.284353 -0.359763 2.5
ENE DIFF: -0.274116 DIST DIFF: -0.4

4) S5...HOH LONE PAIR, HOH: 0. DEGREES
A.I. -0.44 2.84

EMP. -0.365761 7.597964E-02 -0.44174 2.51
ENE DIFF: 7.4239E-02 DIST DIFF: -0.33

AVEDIFF, RMSDIFF, AVERAGE ABSOLUTE ERROR
-1.598175E-02 0.149401 0.121076

RESI TDAZ 0.000 ! 1,3,4-thiadiazole, jon
GROUP ! H1
ATOM C1 CG2R53 0.53 ! ____ /
ATOM H1 HGR52 0.08 ! N2----C1
ATOM N2 NG2R50 -0.48 ! | \
ATOM N3 NG2R50 -0.48 ! | ____ /S5
ATOM C4 CG2R53 0.53 ! \
ATOM H4 HGR52 0.08 ! N3----C4
ATOM S5 SG2R50 -0.26 ! \ ! H4

… nothing to do 😊
RESI SULFAZ 0.00 ! 5-sulfamoyl-1,3,4-thiadiazol-2-yl
GROUP ! charges put together manually from resi TDAZ and BSAM
ATOM C1 CG2R53 0.53
ATOM H1 HGR52 0.08 ! Following standard CHARMM rules, we should sum
ATOM N2 NG2R50 -0.48 ! both TDAZ H4 and BSAM CZ into C4. However, 2-thiadiazolyl
ATOM N3 NG2R50 -0.48 ! is significantly electron-deficient compared to phenyl
ATOM C4 CG2R53 0.82 ! We can't really take this into account quantitatively at
ATOM S5 SG2R50 -0.48 ! this stage, but we can sum a conservative +0.03 charge
ATOM S9 SG3O2 0.64 ! into S9 instead of C4.
ATOM O91 OG2P1 -0.42 ! To capture this effect quantitatively, water interactions
ATOM O92 OG2P1 -0.42 ! are necessary.
ATOM N10 NG321 -0.77
ATOM H101 HGP1 0.38
ATOM H102 HGP1 0.38

...

BONDS
CG2R53 SG3O2 190.00 1.7300 ! acazam, from CG2R61 SG3O2, penalty= 40

ANGLES
CG2R53 NG2R50 NG2R50 80.00 103.65 ! TDAZ
CG2R53 SG2R50 CG2R53 73.00 98.30 ! TDAZ

NG2R50 CG2R53 SG3O2 70.00 109.00 ! acazam, from NG2R53 CG2R53 SG311, penalty= 40
SG2R50 CG2R53 SG3O2 70.00 109.00 ! acazam, from NG2R53 CG2R53 SG311, penalty= 144
CG2R53 SG3O2 NG321 60.00 98.00 ! acazam, from CG2R61 SG3O2 NG321, penalty= 8.5
CG2R53 SG3O2 OG2P1 60.00 101.00 ! acazam, from CG2R61 SG3O2 OG2P1, penalty= 8.5
SULFAZ (2)

DIHEDRALS
SG2R50 CG2R53 NG2R50 NG2R50 10.9000 2 180.00 ! TDAZ
NG2R50 CG2R53 SG2R50 CG2R53 7.5000 2 180.00 ! TDAZ
CG2R53 NG2R50 NG2R50 CG2R53 4.4500 2 180.00 ! TDAZ
HGR52 CG2R53 NG2R50 NG2R50 4.3600 2 180.00 ! TDAZ
HGR52 CG2R53 SG2R50 CG2R53 4.3600 2 180.00 ! TDAZ

! SG3O2 CG2R53 NG2R50 NG2R50 is a compromise between
! SG2R50 CG2R53 NG2R50 NG2R50 10.9000 2 180.00
! and
! HGR52 CG2R53 NG2R50 NG2R50 4.3600 2 180.00
! in TDAZ. We know that heavy atoms substituents often need a higher force constant
! than hydrogens, but a higher force constant also unnaturally rigidifies the ring,
! and we don't have the freedom to compensate for that somewhere else.
! Similarly, G3O2 CG2R53 SG2R50 CG2R53 is a compromise between
! NG2R50 CG2R53 SG2R50 CG2R53 7.5000 2 180.00
! and
! HGR52 CG2R53 SG2R50 CG2R53 4.3600 2 180.00
! This is all rather coarse and should strictly spoken be refined by doing molvib
! and/or pes on TDAZ with a small (possibly methyl) substituent, but in the end,
! it will have only minor impact on the behavior of the system during MD simulations.
SG3O2 CG2R53 NG2R50 NG2R50 7.6300 2 180.00 ! ACAZAM & model compounds, average from TDAZ
SG3O2 CG2R53 SG2R50 CG2R53 5.9300 2 180.00 ! ACAZAM & model compounds, average from TDAZ

NG2R50 CG2R53 SG3O2 NG321 0.3500 2 0.00 ! acazam , from CG2R61 CG2R61 SG3O2 NG321, penalty= 125
NG2R50 CG2R53 SG3O2 OG2P1 0.0000 6 0.00 ! acazam , from CG2R61 CG2R61 SG3O2 OG2P1, penalty= 125
SG2R50 CG2R53 SG3O2 NG321 0.3500 2 0.00 ! acazam , from CG2R61 CG2R61 SG3O2 NG321, penalty= 209
SG2R50 CG2R53 SG3O2 OG2P1 0.0000 6 0.00 ! acazam , from CG2R61 CG2R61 SG3O2 OG2P1, penalty= 209
HGP1 NG321 SG3O2 CG2R53 1.5000 1 180.00 ! acazam , from HGP1 NG321 SG3O2 CG2R61, penalty= 8.5
HGP1 NG321 SG3O2 CG2R53 1.2000 2 0.00 ! acazam , from HGP1 NG321 SG3O2 CG2R61, penalty= 8.5
HGP1 NG321 SG3O2 CG2R53 0.1000 3 0.00 ! acazam , from HGP1 NG321 SG3O2 CG2R61, penalty= 8.5
SULFAZ reference angles (1)

ANGLES
NG2R50 CG2R53 SG3O2 70.00 109.00 ! acazam , from NG2R53 CG2R53 SG311, penalty= 40
SG2R50 CG2R53 SG3O2 70.00 109.00 ! acazam , from NG2R53 CG2R53 SG311, penalty= 144

RESI SULFAZ center C4 bound to N3 S5 S9 : sum = 335.2 (360)
Parameters involved:
../../../toppar/par_all36_cgenff.prm line 1059: NG2R50 CG2R53 SG2R50 ang=117.20
../../../toppar/acazam_models_init.str line 145: SG2R50 CG2R53 SG3O2 ang=109.00
../../../toppar/acazam_models_init.str line 143: NG2R50 CG2R53 SG3O2 ang=109.00
RESI SULFAZ center N10 bound to S9 H101 H102 : sum = 340 (360)
Parameters involved:
../../../toppar/par_all36_cgenff.prm line 1924: SG3O2 NG321 HGP1 ang=115.00
../../../toppar/par_all36_cgenff.prm line 1925: HGP1 NG321 HGP1 ang=110.00
../../../toppar/par_all36_cgenff.prm line 1924: SG3O2 NG321 HGP1 ang=115.00

ANGLES
NG2R50 CG2R53 SG3O2 70.00 120.00 ! SULFAZ
SG2R50 CG2R53 SG3O2 70.00 122.80 ! SULFAZ

Angle (4,5,7) changed 121.09° → 121.77°
(QM target = 121.84°)
SULFAZ angle force constant: 3-point scan (1)

3-point scan: simple alternative to molvib if # of parameters is small. See angscan.inp

<table>
<thead>
<tr>
<th>ANGLES</th>
<th>NG2R50 CG2R53 SG3O2</th>
<th>70.00</th>
<th>120.00</th>
<th>SULFAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2R50 CG2R53 SG3O2</td>
<td>70.00</td>
<td>122.80</td>
<td>SULFAZ</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANGLES</th>
<th>NG2R50 CG2R53 SG3O2</th>
<th>30.00</th>
<th>120.00</th>
<th>SULFAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2R50 CG2R53 SG3O2</td>
<td>30.00</td>
<td>122.80</td>
<td>SULFAZ</td>
<td></td>
</tr>
</tbody>
</table>

Graphs showing...
SULFAZ reference angles (2)

\[
\begin{align*}
\text{ANGLES} \\
\text{NG2R50 CG2R53 SG3O2} & \quad 30.00 \quad 120.00 \quad \text{SULFAZ} \\
\text{SG2R50 CG2R53 SG3O2} & \quad 30.00 \quad 122.80 \quad \text{SULFAZ}
\end{align*}
\]

Angle (4,5,7) changed $122.21^\circ \rightarrow 121.86^\circ$
(QM target = 121.84°)

Sum of equilibrium angles for planar system should equal 540 for a 5-membered ring and 720 for a 6-membered ring. Sum of angles around an sp2 carbon should equal 360.
SULFAZ angle force constant:
3-point scan (2)
Self-consistency achieved
SULFAZ PES: before

Most obvious deficiency: 3-fold See allscan.inp

| | | | | | | | | | |
|----------------|-------|-----|----------|----------|---------------|----------|------------------|------------------|
| NG2R50 CG2R53 SG3O2 NG321 | 0.3500 | 2 | 0.00 | ! acazam | from CG2R61 CG2R61 SG3O2 NG321, penalty= 125 |
| NG2R50 CG2R53 SG3O2 OG2P1 | 0.0000 | 6 | 0.00 | ! acazam | from CG2R61 CG2R61 SG3O2 OG2P1, penalty= 125 |
| SG2R50 CG2R53 SG3O2 NG321 | 0.3500 | 2 | 0.00 | ! acazam | from CG2R61 CG2R61 SG3O2 NG321, penalty= 209 |
| SG2R50 CG2R53 SG3O2 OG2P1 | 0.0000 | 6 | 0.00 | ! acazam | from CG2R61 CG2R61 SG3O2 OG2P1, penalty= 209 |
Most obvious deficiency: 1-fold

<table>
<thead>
<tr>
<th>Bond Configuration</th>
<th>qm</th>
<th>mm</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG2R50 CG2R53 SG3O2 NG321</td>
<td>0.3500</td>
<td>2</td>
<td>0.00 \text{ ! SULFAZ},</td>
</tr>
<tr>
<td>NG2R50 CG2R53 SG3O2 NG321</td>
<td>0.0800</td>
<td>3</td>
<td>0.00 \text{ ! SULFAZ}</td>
</tr>
<tr>
<td>SG2R50 CG2R53 SG3O2 OG2P1</td>
<td>0.0800</td>
<td>3</td>
<td>180.00 \text{ ! SULFAZ}</td>
</tr>
<tr>
<td>SG2R50 CG2R53 SG3O2 NG321</td>
<td>0.3500</td>
<td>2</td>
<td>0.00 \text{ ! SULFAZ},</td>
</tr>
<tr>
<td>SG2R50 CG2R53 SG3O2 NG321</td>
<td>0.0800</td>
<td>3</td>
<td>180.00 \text{ ! SULFAZ}</td>
</tr>
</tbody>
</table>

The diagram shows the molecular structure with the labels B and C indicating specific parts of the molecule.
SULFAZ PES: with 1-fold

Most obvious deficiency: 6-fold
SULFAZ PES: with 6-fold

Introduction of 6-fold required rebalancing 3- & 1-fold

<table>
<thead>
<tr>
<th>Reaction</th>
<th>E (a.u.)</th>
<th>I (amu)</th>
<th>Angle (deg)</th>
<th>Species</th>
<th>qm</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG2R50 CG2R53 SG3O2 NG321</td>
<td>0.2500</td>
<td>1</td>
<td>0.00</td>
<td>SULFAZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG2R50 CG2R53 SG3O2 NG321</td>
<td>0.3200</td>
<td>2</td>
<td>0.00</td>
<td>SULFAZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG2R50 CG2R53 SG3O2 NG321</td>
<td>0.1000</td>
<td>3</td>
<td>0.00</td>
<td>SULFAZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG2R50 CG2R53 SG3O2 NG321</td>
<td>0.0200</td>
<td>6</td>
<td>0.00</td>
<td>SULFAZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG2R50 CG2R53 SG3O2 OG2P1</td>
<td>0.1000</td>
<td>3</td>
<td>180.00</td>
<td>SULFAZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG2R50 CG2R53 SG3O2 OG2P1</td>
<td>0.0200</td>
<td>6</td>
<td>0.00</td>
<td>SULFAZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG2R50 CG2R53 SG3O2 NG321</td>
<td>0.2500</td>
<td>1</td>
<td>180.00</td>
<td>SULFAZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG2R50 CG2R53 SG3O2 NG321</td>
<td>0.3200</td>
<td>2</td>
<td>0.00</td>
<td>SULFAZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG2R50 CG2R53 SG3O2 NG321</td>
<td>0.1000</td>
<td>3</td>
<td>180.00</td>
<td>SULFAZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG2R50 CG2R53 SG3O2 NG321</td>
<td>0.0200</td>
<td>6</td>
<td>0.00</td>
<td>SULFAZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG2R50 CG2R53 SG3O2 OG2P1</td>
<td>0.1000</td>
<td>3</td>
<td>180.00</td>
<td>SULFAZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG2R50 CG2R53 SG3O2 OG2P1</td>
<td>0.0200</td>
<td>6</td>
<td>0.00</td>
<td>SULFAZ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Introduction of 6-fold required rebalancing 3- & 1-fold
SULFAZ PES: with 4-fold

- Actually combination of MCSA fitting and manual tweaking
- Diminishing returns… accuracy of QM??
TDAZAM (1)

RESI TDAZAM 0.00 ! N-(1,3,4-thiadiazol-2-yl)acetamide
GROUP ! Charges put together manually from resi TDAZ and PACP
ATOM C1 CG2R53 0.71
ATOM N2 NG2R50 -0.48 ! Following standard CHARMM rules, we should sum
ATOM N3 NG2R50 -0.48 ! both TDAZ H1 and PACP C22 into C1. However, 2-thiadiazolyl
ATOM C4 CG2R53 0.53 ! is significantly electron-deficient compared to 4-phenolyl
ATOM H4 HGR52 0.08 ! We can't really take this into account quantitatively at
ATOM S5 SG2R50 -0.26 ! this stage, but we can sum a conservative +0.04 charge
ATOM N6 NG2S1 -0.43 ! into N6 instead of C1.
ATOM H6 HGP1 0.33 ! To capture this effect quantitatively, water interactions
ATOM C7 CG2O1 0.52 ! are necessary.
ATOM O7 OG2D1 -0.52
ATOM C8 CG331 -0.27
ATOM H81 HGA3 0.09
ATOM H82 HGA3 0.09
ATOM H83 HGA3 0.09

BONDS
CG2R53 NG2S1 305.00 1.4140 ! acazam , from CG2R61 NG2S1, penalty= 40

ANGLES
CG2R53 NG2R50 NG2R50 80.00 103.65 ! TDAZ
CG2R53 SG2R50 CG2R53 73.00 98.30 ! TDAZ
NG2R50 CG2R53 NG2S1 65.00 127.80 ! acazam , from NG2R53 CG2R53 OG2D1, penalty= 57
NG2S1 CG2R53 SG2R50 30.00 118.00 ! acazam , from SG2R50 CG2R53 HGR52, penalty= 144
CG2O1 NG2S1 CG2R53 50.00 120.00 ! acazam , from CG2O1 NG2S1 CG2R61, penalty= 8.5
CG2R53 NG2S1 HGP1 34.00 117.00 ! acazam , from CG2R61 NG2S1 HGP1, penalty= 8.5
TDAZAM (2)

DIHEDRALS
SG2R50 CG2R53 NG2R50 NG2R50 10.9000 2 180.00 ! TDAZ
NG2R50 CG2R53 SG2R50 CG2R53 7.5000 2 180.00 ! TDAZ
CG2R53 NG2R50 NG2R50 CG2R53 4.4500 2 180.00 ! TDAZ
HGR52 CG2R53 NG2R50 NG2R50 4.3600 2 180.00 ! TDAZ
HGR52 CG2R53 SG2R50 CG2R53 4.3600 2 180.00 ! TDAZ
NG2S1 CG2R53 NG2R50 NG2R50 7.6300 2 180.00 ! ACAZAM & model compounds, average of endocyclic and exocyclic from TDAZ
NG2S1 CG2R53 SG2R50 CG2R53 5.9300 2 180.00 ! ACAZAM & model compounds, average of endocyclic and exocyclic from TDAZ
SG3O2 CG2R53 NG2R50 NG2R50 7.6300 2 180.00 ! ACAZAM & model compounds, average of endocyclic and exocyclic from TDAZ
SG3O2 CG2R53 SG2R50 CG2R53 5.9300 2 180.00 ! ACAZAM & model compounds, average of endocyclic and exocyclic from TDAZ

IMPROPERS
CG2R53 NG2R50 NG2S1 SG2R50 43.0000 0 0.00 ! acazam , from CG2R53 NG2R53 OG2D1 SG311, penalty= 114
TDAZAM reference angles (1)

ANGLES
NG2R50 CG2R53 NG2S1 65.00 127.80 ! acazam, from NG2R53 CG2R53 OG2D1, penalty=57
NG2S1 CG2R53 SG2R50 30.00 118.00 ! acazam, from SG2R50 CG2R53 HGR52, penalty=144

RESI TDAZAM center C1 bound to S5 N2 N6 : sum = 363 (360)
Parameters involved:
../../../toppar/par_all36_cgenff.prm line 1059: NG2R50 CG2R53 SG2R50 ang=117.20
../../../toppar/acazam_sulfaz_4fold.str line 145: NG2R50 CG2R53 NG2S1 ang=127.80
../../../toppar/acazam_sulfaz_4fold.str line 146: NG2S1 CG2R53 SG2R50 ang=118.00

ANGLES
NG2R50 CG2R53 NG2S1 65.00 129.10 ! TDAZAM
NG2S1 CG2R53 SG2R50 30.00 113.70 ! TDAZAM

Angle (2,1,7) changed 117.96° → 119.74°
(QM target = 119.75°)
TDAZAM angle force constant: 3-point scan (1)

See fit_ang/angscan.inp
TDAZAM reference angles (2)

ANGLES
NG2R50 CG2R53 NG2S1 68.00 129.10 ! TDAZAM
NG2S1 CG2R53 SG2R50 68.00 113.70 ! TDAZAM

Angle (2,1,7) changed 122.36° → 119.78°
(QM target = 119.75°)
TDAZAM angle force constant:
3-point scan (2)
Self-consistency achieved
TDAZAM improper: 3-point scan

See fit_imp/allscan.inp
TDAZAM PES: before

Most obvious deficiency: 1-fold, See fit_dih/allscan.inp
TDAZAM PES: improved 1-fold

Most obvious deficiency: 2-fold, See fit_dih/allscan.inp
TDAZAM PES: improved 2-fold

Most obvious deficiency: 3-fold
TDAZAM PES: with 3-fold

Twist: NG2S1 was deformed during the scan ⇒
- Remove odd phases
- Constrain at low realistic value
- Rebalance other parameters
MCSA fitting re-introduced N deformation and therefore failed to find good parameters.

Above parameters: complicated combination of MCSA fitting and manual tweaking in order to avoid this.

Worth the effort???
Full acetazolamide model (3)

- Known shortcuts/deficiencies:
 - Combining charges for linkages ambiguous (water interactions on TDAZAM & SULFAZ?)
 - Ring substituent dihedrals (MOLVIB or PES on TDAZAM & SULFAZ ???)
 - Linkage bond parameters (crystal surveys and/or 3-point scans!)
 - In principle requires refitting everything (especially diedrals) to maintain self-consistency

- Final validation against relevant experimental data! (the proof is in the pudding)
Full acetazolamide model(1)

RESI ACAZAM 0.00 ! acetazolamide, N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)acetamide

GROUP
ATOM C1 CG2R53 0.71
ATOM N2 NG2R50 -0.48
ATOM N3 NG2R50 -0.48
ATOM C4 CG2R53 0.82
ATOM S5 SG2R50 -0.26
ATOM N6 NG2S1 -0.43
ATOM H6 HGP1 0.33
ATOM C7 CG2O1 0.52
ATOM O7 OG2D1 -0.52
ATOM C8 CG331 -0.27
ATOM H81 HGA3 0.09
ATOM H82 HGA3 0.09
ATOM H83 HGA3 0.09
ATOM S9 SG3O2 0.64
ATOM O91 OG2P1 -0.42
ATOM O92 OG2P1 -0.42
ATOM N10 NG321 -0.77
ATOM H101 HGP1 0.38
ATOM H102 HGP1 0.38

BOND ...
IMPR C1 N2 N6 S5
IMPR C7 C8 N6 O7

BONDS
CG2R53 NG2S1 305.00 1.4140 ! acazam , from CG2R61 NG2S1, penalty= 40
CG2R53 SG3O2 190.00 1.7300 ! acazam , from CG2R61 SG3O2, penalty= 40

ANGLES
CG2R53 NG2R50 NG2R50 80.00 103.65 ! TDAZ
CG2R53 SG2R50 CG2R53 73.00 98.30 ! TDAZ
NG2R50 CG2R53 SG3O2 30.00 119.50 ! SULFAZ
SG2R50 CG2R53 SG3O2 30.00 123.30 ! SULFAZ
NG2R50 CG2R53 NG2S1 69.00 126.10 ! TDAZAM
NG2S1 CG2R53 SG2R50 69.00 116.70 ! TDAZAM
CG2O1 NG2S1 CG2R53 50.00 120.00 ! acazam , from CG2O1 NG2S1 CG2R61, penalty= 8.5
CG2R53 NG2S1 HGP1 34.00 117.00 ! acazam , from CG2R61 NG2S1 HGP1, penalty= 8.5
CG2R53 SG3O2 NG321 60.00 98.00 ! acazam , from CG2R61 SG3O2 NG321, penalty= 8.5
CG2R53 SG3O2 OG2P1 60.00 101.00 ! acazam , from CG2R61 SG3O2 OG2P1, penalty= 8.5
Full acetazolamide model (2)

DIHEDRALS

<table>
<thead>
<tr>
<th>Bond</th>
<th>Value</th>
<th>Type</th>
<th>Torsion</th>
<th>Additional Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2R50 CG2R53 NG2R50 NG2R50</td>
<td>10.9000</td>
<td>2</td>
<td>180.00</td>
<td>TDAZ</td>
</tr>
<tr>
<td>NG2R50 CG2R53 SG2R50 CG2R53</td>
<td>7.5000</td>
<td>2</td>
<td>180.00</td>
<td>TDAZ</td>
</tr>
<tr>
<td>CG2R53 NG2R50 NG2R50 CG2R53</td>
<td>4.4500</td>
<td>2</td>
<td>180.00</td>
<td>TDAZ</td>
</tr>
<tr>
<td>NG2S1 CG2R53 NG2R50 NG2R50</td>
<td>7.6300</td>
<td>2</td>
<td>180.00</td>
<td>ACAZAM & model compounds, average from TDAZ</td>
</tr>
<tr>
<td>NG2S1 CG2R53 SG2R50 CG2R53</td>
<td>7.6300</td>
<td>2</td>
<td>180.00</td>
<td>ACAZAM & model compounds, average from TDAZ</td>
</tr>
<tr>
<td>CG2R53 NG2R50 NG2R50 CG2R53</td>
<td>4.4500</td>
<td>2</td>
<td>180.00</td>
<td>TDAZ</td>
</tr>
<tr>
<td>NG2R50 CG2R53 SG3O2 NG321</td>
<td>0.2600</td>
<td>1</td>
<td>0.00</td>
<td>SULFAZ</td>
</tr>
<tr>
<td>NG2R50 CG2R53 SG3O2 NG321</td>
<td>0.3500</td>
<td>2</td>
<td>0.00</td>
<td>SULFAZ</td>
</tr>
<tr>
<td>NG2R50 CG2R53 SG3O2 NG321</td>
<td>0.1000</td>
<td>3</td>
<td>0.00</td>
<td>SULFAZ</td>
</tr>
<tr>
<td>NG2R50 CG2R53 SG3O2 NG321</td>
<td>0.0300</td>
<td>4</td>
<td>180.00</td>
<td>SULFAZ</td>
</tr>
<tr>
<td>NG2S1 CG2R53 NG2R50 NG2R50</td>
<td>0.2600</td>
<td>1</td>
<td>180.00</td>
<td>SULFAZ</td>
</tr>
<tr>
<td>NG2S1 CG2R53 SG2R50 CG2R53</td>
<td>0.3500</td>
<td>2</td>
<td>0.00</td>
<td>SULFAZ</td>
</tr>
<tr>
<td>NG2R50 CG2R53 SG3O2 NG321</td>
<td>0.1000</td>
<td>3</td>
<td>180.00</td>
<td>SULFAZ</td>
</tr>
<tr>
<td>NG2R50 CG2R53 SG3O2 NG321</td>
<td>0.0200</td>
<td>4</td>
<td>0.00</td>
<td>SULFAZ</td>
</tr>
<tr>
<td>SG2R50 CG2R53 SG3O2 NG321</td>
<td>0.0200</td>
<td>6</td>
<td>0.00</td>
<td>SULFAZ</td>
</tr>
<tr>
<td>NG2R50 CG2R53 NG2S1 CG2O1</td>
<td>1.1700</td>
<td>1</td>
<td>0.00</td>
<td>TDAZAM</td>
</tr>
<tr>
<td>NG2R50 CG2R53 NG2S1 CG2O1</td>
<td>1.5100</td>
<td>2</td>
<td>180.00</td>
<td>TDAZAM</td>
</tr>
<tr>
<td>NG2R50 CG2R53 NG2S1 CG2O1</td>
<td>0.3300</td>
<td>3</td>
<td>0.00</td>
<td>TDAZAM</td>
</tr>
<tr>
<td>NG2R50 CG2R53 NG2S1 CG2O1</td>
<td>0.8000</td>
<td>4</td>
<td>0.00</td>
<td>TDAZAM</td>
</tr>
<tr>
<td>NG2R50 CG2R53 NG2S1 CG2O1</td>
<td>0.5000</td>
<td>2</td>
<td>180.00</td>
<td>TDAZAM, constrained at value from PACP</td>
</tr>
<tr>
<td>SG2R50 CG2R53 NG2S1 CG2O1</td>
<td>1.1700</td>
<td>1</td>
<td>180.00</td>
<td>TDAZAM</td>
</tr>
<tr>
<td>SG2R50 CG2R53 NG2S1 CG2O1</td>
<td>1.5100</td>
<td>2</td>
<td>180.00</td>
<td>TDAZAM</td>
</tr>
<tr>
<td>SG2R50 CG2R53 NG2S1 CG2O1</td>
<td>0.3300</td>
<td>3</td>
<td>180.00</td>
<td>TDAZAM</td>
</tr>
<tr>
<td>SG2R50 CG2R53 NG2S1 CG2O1</td>
<td>0.8000</td>
<td>4</td>
<td>0.00</td>
<td>TDAZAM</td>
</tr>
<tr>
<td>SG2R50 CG2R53 NG2S1 HGP1</td>
<td>0.5000</td>
<td>2</td>
<td>180.00</td>
<td>TDAZAM, constrained at value from PACP</td>
</tr>
<tr>
<td>CG331 CG2O1 NG2S1 CG2R53</td>
<td>1.6000</td>
<td>1</td>
<td>0.00</td>
<td>acazam, from CG331 CG2O1 NG2S1 CG2R61, penalty= 8.5</td>
</tr>
<tr>
<td>CG331 CG2O1 NG2S1 CG2R53</td>
<td>2.5000</td>
<td>2</td>
<td>180.00</td>
<td>acazam, from CG331 CG2O1 NG2S1 CG2R61, penalty= 8.5</td>
</tr>
<tr>
<td>OG2D1 CG2O1 NG2S1 CG2R53</td>
<td>2.5000</td>
<td>2</td>
<td>180.00</td>
<td>acazam, from OG2D1 CG2O1 NG2S1 CG2R61, penalty= 8.5</td>
</tr>
<tr>
<td>HGP1 NG321 SG3O2 CG2R53</td>
<td>1.5000</td>
<td>1</td>
<td>180.00</td>
<td>acazam, from HGP1 NG321 SG3O2 CG2R61, penalty= 8.5</td>
</tr>
<tr>
<td>HGP1 NG321 SG3O2 CG2R53</td>
<td>1.2000</td>
<td>2</td>
<td>0.00</td>
<td>acazam, from HGP1 NG321 SG3O2 CG2R61, penalty= 8.5</td>
</tr>
<tr>
<td>HGP1 NG321 SG3O2 CG2R53</td>
<td>0.1000</td>
<td>3</td>
<td>0.00</td>
<td>acazam, from HGP1 NG321 SG3O2 CG2R61, penalty= 8.5</td>
</tr>
</tbody>
</table>

IMPROPERS

<table>
<thead>
<tr>
<th>Bond</th>
<th>Value</th>
<th>Type</th>
<th>Torsion</th>
<th>Additional Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG2R53 NG2R50 NG2S1 SG2R50</td>
<td>23.0000</td>
<td>0</td>
<td>0.00</td>
<td>TDAZAM</td>
</tr>
</tbody>
</table>
LJ (vdW) parameters

• Direct transfer from available parameters is generally adequate

• Test via
 – Heat of vaporization
 – Density (Molecular Volume)
 – Partial molar volume
 – Crystal simulations
Experimental target data for bonded parameters

- Geometries (equilibrium bond, angle, dihedral and improper terms)
 - microwave, electron diffraction
 - small molecule x-ray crystallography (CSD)
 - crystal surveys of geometries
- Vibrational spectra (force constants)
 - infrared, Raman
- Conformational energies (force constants)
 - microwave

For most drug molecules the amount of experimental data is minimal, requiring the use of QM data. However, for geometries it is often possible to do surveys of the Cambridge Structural Database for a type of linkage to obtain target geometries.
Lead Optimization

Addition of simple functional groups is generally straightforward once the full compound parameters have been optimized.
1) Delete appropriate hydrogens (i.e. at site of covalent bond)
2) Shift charge of deleted hydrogen into carbon being functionalized.
3) Add functional group
4) Offset charge on functionalized carbon to account for functional group charge requirements
1) Aliphatics: just neutralize added functional group, \(q_{\text{H}} = 0.09 \)
2) Phenol OH: \(q_{\text{C}} = 0.11, q_{\text{O}} = -0.54, q_{\text{H}} = 0.43 \)
3) Aliphatic OH: \(q_{\text{C}} = -0.04, q_{\text{O}} = -0.66, q_{\text{H}} = 0.43 \)
4) Amino: \(q_{\text{C}} = 0.16, q_{\text{CH}} = 0.05, q_{\text{N}} = -0.30, q_{\text{H}} = 0.33 \)
5) Carboxylate: \(q_{\text{C}} = -0.37, q_{\text{CO}} = -0.62, q_{\text{O}} = -0.76 \)
5) Internal parameters should be present. Add by analogy if needed.
6) Optimize necessary parameters.

Perform above via the CHARMM PATCH (PRES) command
1) Junk in, junk out: Parameter optimization effort based on application requirements.
2) Follow standard protocol for the force field of interest (higher level QM is not necessarily better).
3) Careful parameter optimization of lead molecules.
4) Simple substitutions often require minimal or no optimization.
ParamChem

https://www.paramchem.org/index.htm

ParamChem Force Field Engine: Web based utility to automatically generate topology and additional parameters to model drug like molecules in the context of CGenFF (and other FFs in the future).

1) Automatic atom typing, partial charge assignment and parameter guess (with scores!) based on mol2 input format.

2) “Automatic” parameter validation via reproduction of QM potential energy surfaces etc.

3) “Automatic” parameter optimization via reproduction of QM potential energy surfaces etc.
Acknowledgements

MacKerell lab members
(Kenno Vanommeslaeghe)
ParamChem Team
Science Gateways group, IU
NIH, NSF, DoD HPC, NPACI, PSC Terascale Computing